277 research outputs found

    Penetration depth for shallow impact cratering

    Get PDF
    We present data for the penetration of a variety of spheres, dropped from rest, into a level non-cohesive granular medium. We improve upon our earlier work [Uehara {\it et al.} Phys. Rev. Lett. {\bf 90}, 194301 (2003)] in three regards. First, we explore the behavior vs sphere diameter and density more systematically, by holding one of these parameters constant while varying the other. Second, we prepare the granular medium more reproducibly and, third, we measure the penetration depth more accurately. The new data support our previous conclusion that the penetration depth is proportional to the 1/2 power of sphere density, the 2/3 power of sphere diameter, and the 1/3 power of total drop distance

    Numerical simulations of liquid-gas-solid three-phase flows in microgravity

    Get PDF
    Three-phase liquid-gas-solid flows under microgravity condition are studied. An Eulerian- Lagrangian computational model was developed and used in the simulations. In this approach, the liquid flow was modeled by a volume-averaged system of governing equations, whereas motions of particles and bubbles were evaluated using the Lagrangian trajectory analysis procedure. It was assumed that the bubbles remained spherical, and their shape variations were neglected. The bubble-liquid, particle-liquid and bubbl- particle two-way interactions were accounted for in the analysis. The discrete phase equations used included drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions were accounted for by the hard sphere model. Bubble coalescence was also included in the model. The transient flow characteristics of the three-phase flow were studied; and the effects of gravity, inlet bubble size and g-jitter acceleration on variation of flow characteristics were discussed. The low gravity simulations showed that most bubbles are aggregated in the inlet region. Also, under microgravity condition, bubble transient time is much longer than that in normal gravity. As a result, the Sauter mean bubble diameter, which is proportional to the transient time of the bubble, becomes rather large, reaching to more than 9 mm. The bubble plume in microgravity exhibits a plug type flow behavior. After the bubble plume reaches the free surface, particle volume fraction increases along the height of the column. The particles are mainly located outside the bubble plume, with very few particles being retained in the plume. In contrast to the normal gravity condition, the three phases in the column are poorly mixed under microgravity conditions. The velocities of the three phases were also found to be of the same order. Bubble size significantly affects the characteristics of the three-phase flows under microgravity conditions. For the same inlet bubble number density, the flow with larger bubbles evolves faster. The simulation results showed that the effect of g-jitter acceleration on the gas-liquid-particle three phase flows is small

    Grain‐energy release governs mobility of debris flow due to solid–liquid mass release

    Get PDF
    Debris flows often exhibit high mobility, leading to extensive hazards far from their sources. Although it is known that debris flow mobility increases with initial volume, the underlying mechanism remains uncertain. Here, we reconstruct the mobility–volume relation for debris flows using a recent depth‐averaged two‐phase flow model without evoking a reduced friction coefficient, challenging currently prevailing friction‐reduction hypotheses. Physical experimental debris flows driven by solid–liquid mass release and extended numerical cases at both laboratory and field scales are resolved by the model. For the first time, we probe into the energetics of the debris flows and find that, whilst the energy balance holds and fine and coarse grains play distinct roles in debris flow energetics, the grains as a whole release energy to the liquid due to inter‐phase and inter‐grain size interactions, and this grain‐energy release correlates closely with mobility. Despite uncertainty arising from the model closures, our results provide insight into the fundamental mechanisms operating in debris flows. We propose that debris flow mobility is governed by grain‐energy release, thereby facilitating a bridge between mobility and internal energy transfer. The initial volume of debris flow is inadequate for characterizing debris flow mobility, and a friction‐reduction mechanism is not a prerequisite for the high mobility of debris flows. By contrast, inter‐phase and inter‐grain size interactions play primary roles and should be incorporated explicitly in debris flow models. Our findings are qualitatively encouraging and physically meaningful, providing implications not only for assessing future debris flow hazards and informing mitigation and adaptation strategies, but also for unravelling a spectrum of earth surface processes including heavily sediment‐laden floods, subaqueous debris flows and turbidity currents in rivers, reservoirs, estuaries, and ocean

    Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions

    Full text link
    Using the molecular dynamics method, we examine a discrete deterministic model for the motion of spherical particles in three-dimensional space. The model takes into account multiparticle collisions in arbitrary forms. Using fractional calculus we proposed an expression for the repulsive force, which is the so called fractional interaction law. We then illustrate and discuss how to control (correlate) the energy dissipation and the collisional time for an individual article within multiparticle collisions. In the multiparticle collisions we included the friction mechanism needed for the transition from coupled torsion-sliding friction through rolling friction to static friction. Analysing simple simulations we found that in the strong repulsive state binary collisions dominate. However, within multiparticle collisions weak repulsion is observed to be much stronger. The presented numerical results can be used to realistically model the impact dynamics of an individual particle in a group of colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review

    Assessing a Hydrodynamic Description for Instabilities in Highly Dissipative, Freely Cooling Granular Gases

    Full text link
    An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the critical length scale associated with the onset of two types of instabilities -vortices and clusters- via stability analyses of the Navier-Stokes-order hydrodynamic equations by using the expressions of the transport coefficients obtained from both the standard and the modified-Sonine approximations. We examine the impact of both Sonine approximations over a range of solids fraction \phi <0.2 for small restitution coefficients e=0.25--0.4, where the standard and modified theories exhibit discrepancies. The theoretical predictions for the critical length scales are compared to molecular dynamics (MD) simulations, of which a small percentage were not considered due to inelastic collapse. Results show excellent quantitative agreement between MD and the modified-Sonine theory, while the standard theory loses accuracy for this highly dissipative parameter space. The modified theory also remedies a (highdissipation) qualitative mismatch between the standard theory and MD for the instability that forms more readily. Furthermore, the evolution of cluster size is briefly examined via MD, indicating that domain-size clusters may remain stable or halve in size, depending on system parameters.Comment: 4 figures; to be published in Phys. Rev.

    Compaction and dilation rate dependence of stresses in gas-fluidized beds

    Full text link
    A particle dynamics-based hybrid model, consisting of monodisperse spherical solid particles and volume-averaged gas hydrodynamics, is used to study traveling planar waves (one-dimensional traveling waves) of voids formed in gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging in a co-traveling frame, we compute solid phase continuum variables (local volume fraction, average velocity, stress tensor, and granular temperature) across the waves, and examine the relations among them. We probe the consistency between such computationally obtained relations and constitutive models in the kinetic theory for granular materials which are widely used in the two-fluid modeling approach to fluidized beds. We demonstrate that solid phase continuum variables exhibit appreciable ``path dependence'', which is not captured by the commonly used kinetic theory-based models. We show that this path dependence is associated with the large rates of dilation and compaction that occur in the wave. We also examine the relations among solid phase continuum variables in beds of cohesive particles, which yield the same path dependence. Our results both for beds of cohesive and non-cohesive particles suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect analysis added

    Hydrodynamic Description of Granular Convection

    Full text link
    We present a hydrodynamic model that captures the essence of granular dynamics in a vibrating bed. We carry out the linear stability analysis and uncover the instability mechanism that leads to the appearance of the convective rolls via a supercritical bifurcation of a bouncing solution. We also explicitly determine the onset of convection as a function of control parameters and confirm our picture by numerical simulations of the continuum equations.Comment: 14 pages, RevTex 11pages + 3 pages figures (Type csh

    Investigation of fluidized bed behaviour using electrical capacitance tomography

    Get PDF
    The temporal and cross‐sectional distributions of particles in a 127 mm diameter fluidized bed have been obtained using a new generation, high‐speed electrical capacitance tomography. Two planes of eight electrodes were used and mounted at 160 mm and 660 mm from the gas distributor which was a 3 mm thick porous plastic plate (maximum pore size of 50 ÎŒm‐70 ÎŒm). 3 mm diameter, nearly‐spherical polyethylene granules made up the bed. Experiments at sampling frequencies of 200‐2000 cross‐sections per second and gas superficial velocities from just below the minimum fluidization to 83% above minimum fluidization velocities were used. The time series of the cross‐sectional average void fractions have been examined both directly and in amplitude and frequency space. The last two used probability density functions and power spectral densities. The information gathered shows that the fluidized bed was operating in the slugging mode, which is not surprising given the size of the particles. It has been found that an increase in the excess gas velocity above the minimum fluidization velocity resulted in an increase in the mean void fraction, an increase in the length and velocity of the slug bubbles as well as the bed height, and a slight decrease in the slug frequency. The results are presented in a level of detail suitable for comparison with later numerical simulation

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]
    • 

    corecore